

Massachusetts Water Resources Authority

Presentation to

MWRA Board of Directors

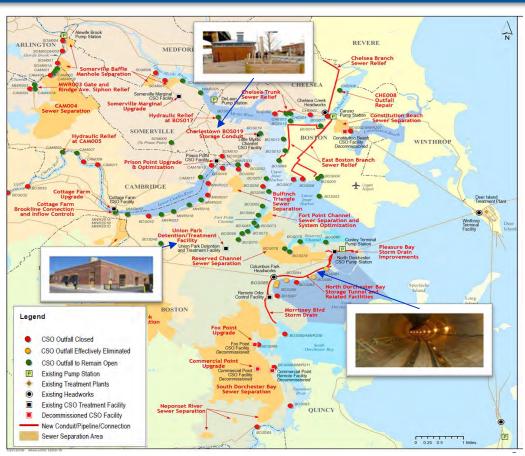
Draft Updated CSO Control Plan Alternatives Recommendation

October 29, 2025

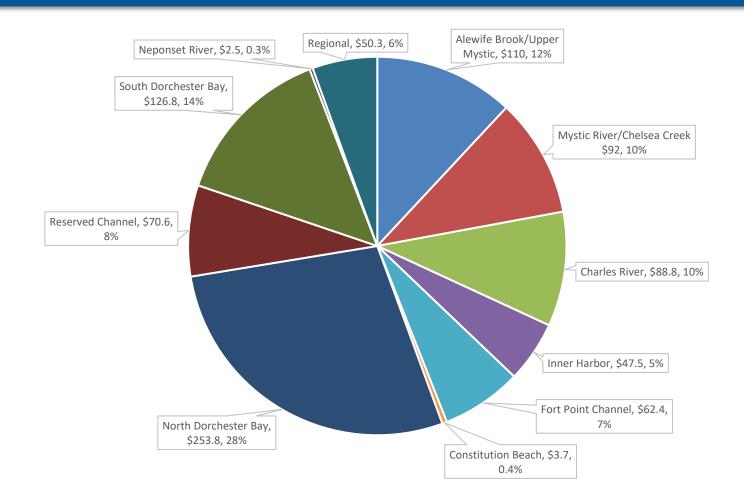
Agenda

- Background
- Water Quality
- Levels of Control
- CSO Reduction and Elimination Tools
- Public Engagement
- Alternatives Development
- Alternatives Evaluation and Scoring
- Recommended Alternatives
- Projected CSO Reduction
- Cost Sharing and Financial Considerations
- Next Steps

Massachusetts Water Resources Authority

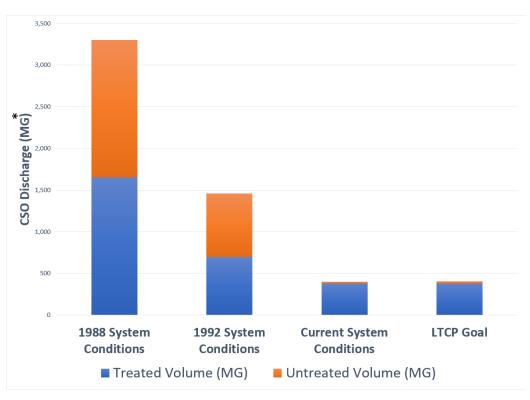

Background

Completed Long Term Control Plan

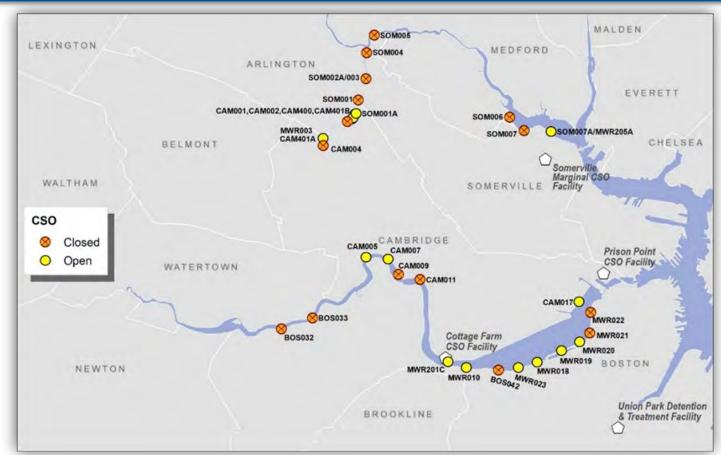

Types of CSO Control Projects

- Included a range of projects (35 total) targeted to site specific control including:
 - System optimization
 - Sewer separation
 - Interceptor relief
 - Detention treatment facilities
 - Storage facilities
 - Upgrades to existing CSO facilities
- Total cost \$911 million (\$1.52 billion in today's dollars)
- When combined with related local community projects, that investment is over \$1 billion.

MWRA CSO Investments By Receiving Water



Prior Long Term Control Plan


- System wide improvements resulted in an 88% reduction in CSO discharge since 1980s.
- 94% of remaining CSO is Treated using Prior Typical Year.

System Wide CSO Reduction Since the 1980s *Annual discharge volume based on the prior Typical Year

Variance Water CSOs

Massachusetts Water Resources Authority

Water Quality

Water Quality - Sources of Pollution

Dry weather

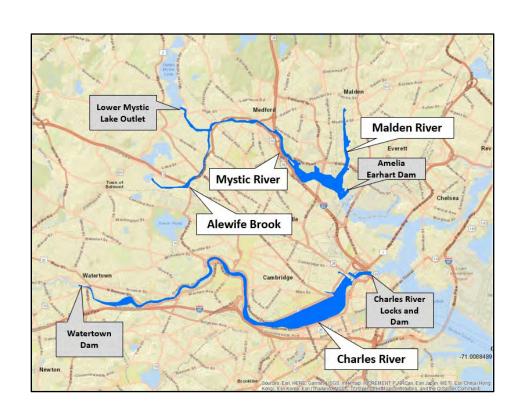
- Illicit connections
- Leaky sewer pipes
- Wildlife and dog excrement
- Decomposing leaves

Stormwater

- Pathogens (bacteria, viruses)
- Oil and grease
- Nutrients (Phosphorus, Nitrogen)
- Trash
- Others

CSOs

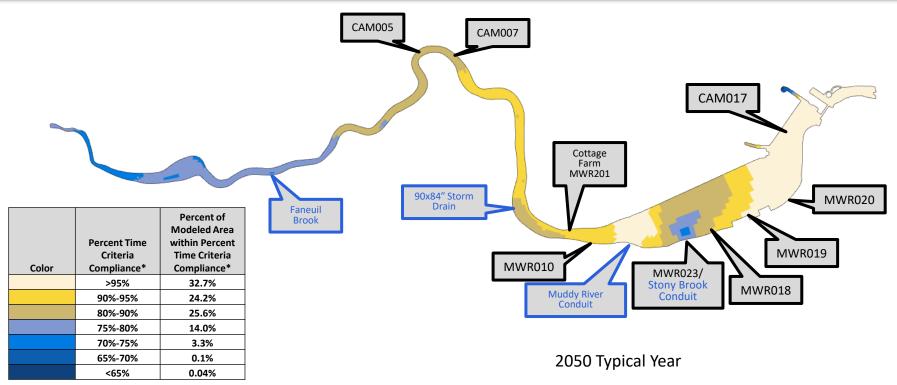
- Pathogens (bacteria, viruses)
- Oil and grease
- Wipes
- Nutrients (Phosphorus, Nitrogen)
- Pharmaceuticals
- Industrial waste
- Others


These pollutants have negative impacts on water quality, environmental health, and public health.

Eliminating CSOs alone does not result in swimmable and fishable waterbodies.

Water Quality - Model Results

- Separate models run for the Charles River and Mystic/Alewife for the full 2050 Typical Year
- Following results are preliminary
- Compliance with WQ benchmarks as recommended by DEP
 - Use of 410 #/100mL E. coli as the benchmark
- Models show impacts of non-CSO sources such as stormwater and conditions upstream of the model area
- Model results do not account for additional CSO control measures in the Updated CSO Control Plan

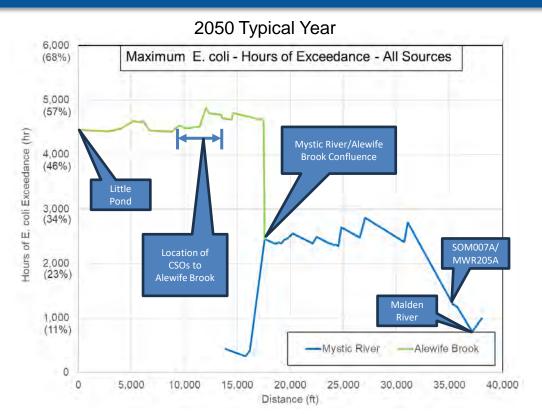

Water Quality Modeling Results - Charles River

Percentage Time Entire Modeled River is in Compliance*						
	<i>E. coli</i> (410#/100mL)					
Model Run	All Sources	Stormwater Only				
2050 Typical Year	51% (186 days)	51% (186 days)	99.7% (364 days)	64% (234 days)		

^{*}Based on guidance from DEP, model results were analyzed for a single sample maximum equivalent to the value of the Class B Statistical Threshold Value Criterion (STV) for bacteria. The Class B water quality criteria for bacteria at 314 CMR 4.05 (5)(f.1) do not identify a single sample max criterion but rather identify a geometric mean and a 90th percentile STV.

Charles River - % of time in compliance - All Sources

^{*}Based on guidance from DEP, model results were analyzed for a single sample maximum equivalent to the value of the Class B Statistical Threshold Value Criterion (STV) for bacteria. The Class B water quality criteria for bacteria at 314 CMR 4.05 (5)(f.1) do not identify a single sample max criterion but rather identify a geometric mean and a 90th percentile STV.


Water Quality Modeling Results - Alewife Brook / Mystic River

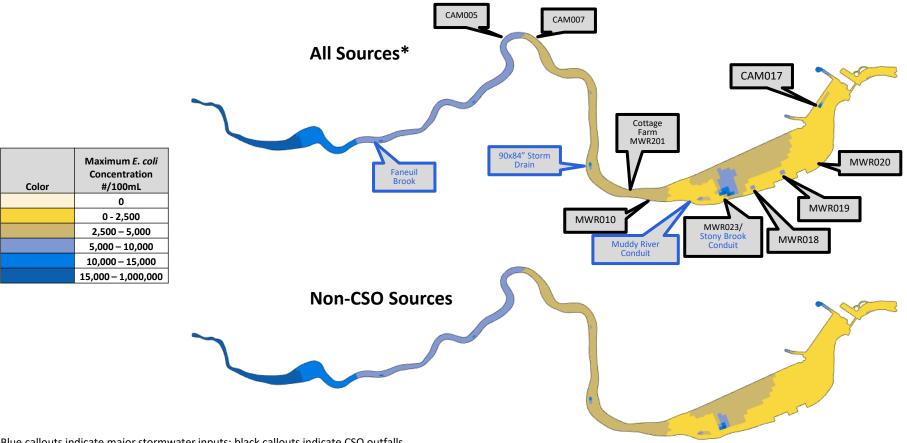
Percentage Time Entire Modeled River is in Compliance*							
	E. coli (410#/100mL)						
Model Run	All Sources	Non-CSO Sources	CSO Only	Stormwater Only			
	Alewife Brook						
2050 Typical Year	41% (150 days)	41 % (150 days)	99% (361 days)	43% (157 days)			
Mystic River							
2050 Typical Year	52% (190 days)	52% (190 days)	96% (350 days)	54% (197 days)			

^{*}Based on guidance from DEP, model results were analyzed for a single sample maximum equivalent to the value of the Class B Statistical Threshold Value Criterion (STV) for bacteria. The Class B water quality criteria for bacteria at 314 CMR 4.05 (5)(f.1) do not identify a single sample max criterion but rather identify a geometric mean and a 90th percentile STV.

Alewife Brook/Mystic River - % of time in exceedance - All Sources

^{*}Based on guidance from DEP, model results were analyzed for a single sample maximum equivalent to the value of the Class B Statistical Threshold Value Criterion (STV) for bacteria. The Class B water quality criteria for bacteria at 314 CMR 4.05 (5)(f.1) do not identify a single sample max criterion but rather identify a geometric mean and a 90th percentile STV.

Water Quality - Acute Impacts


 Stakeholders have expressed interest in evaluating the peak counts of bacteria after CSO discharges

 These acute impacts from CSO only occur concurrently with impacts from other sources

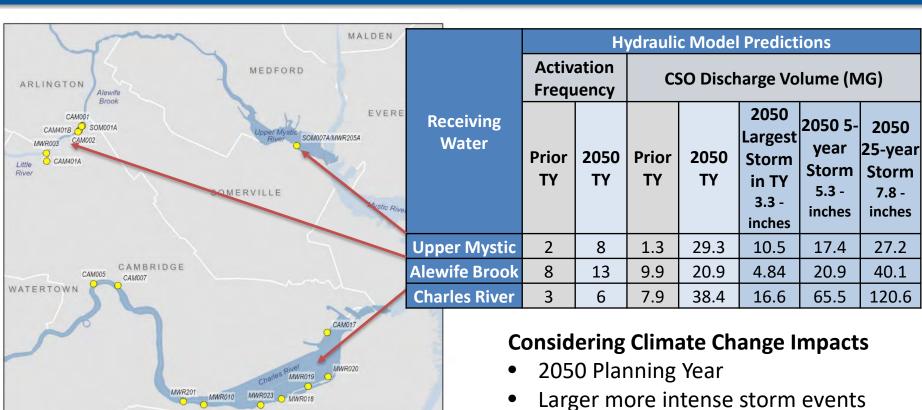
• This preliminary analysis compares the maximum *E. coli* concentration in the 2050 Typical Year with and without CSO

Charles River - Maximum E. coli Counts (2050 TY)

^{*}Blue callouts indicate major stormwater inputs; black callouts indicate CSO outfalls

Alewife Brook/Mystic River - Maximum *E. coli* Counts (2050 TY)

- Preliminary analysis shows that CSOs do have an impact on maximum counts of *E. coli* these peak counts range from:
 - 120,000 in portions of the Alewife Brook
 - 80,000 at the confluence of the Alewife and Mystic
 - 20,000 by SOM007A/MWR205A near the Amelia Earhart Dam
- Without CSO, these peak counts range from 20,000 (Alewife Brook) and 10,000 (lower reaches of the Mystic)
- These results are orders of magnitude higher than the *E. coli* benchmark of 410 #/100mL.



Massachusetts Water Resources Authority

Levels of Control

CSO Increases When Considering Climate Change

Variance Water CSO Outfall

Variance Waters

BOSTON

BROOKLINE

Larger more intense storm event

Larger CSO volumes expected

	Hydraulic Model Predictions				
Receiving Water	Activation CSO Discharge Volume (MG)				
	2050 TY	2050 TY	2050 Largest Storm in TY	2050 5- year Storm	2050 25-year Storm
Upper Mystic	8	29.3	10.5	17.4	27.2
Alewife Brook	13	20.9	4.84	20.9	40.1
Charles River	6	38.4	16.6	65.5	120.6

	Hydraulic Model Predictions				
Receiving Water	Activation CSO Discharge Volume (MG)				
	2050 TY	2050 TY	2050 Largest Storm in TY	2050 5- year Storm	2050 25-year Storm
Upper Mystic	8	29.3	10.5	17.4	27.2
Alewife Brook	13	20.9	4.84	20.9	40.1
Charles River	6	38.4	16.6	65.5	120.6

Significantly reducing CSO discharges from those predicted to occur in a 2050 Typical Year ("Limited CSO in 2050 Typical Year")

	Hydraulic Model Predictions					
Receiving Water Activation CSO Di			CSO Discharg	O Discharge Volume (MG)		
	2050 TY	2050 TY	2050 Largest Storm in TY	2050 5- year Storm	2050 25-year Storm	
Upper Mystic	8	29.3	10.5	17.4	27.2	
Alewife Brook	13	20.9	4.84	20.9	40.1	
Charles River	6	38.4	16.6	65.5	120.6	

Significantly reducing CSO discharges from those predicted to occur in a 2050 Typical Year ("Limited CSO in 2050 Typical Year")

No CSO in a 2050 Typical Year ("2050 Typical Year")

	Hydraulic Model Predictions					
Receiving Water	Activation Frequency	CSO Discharge Volume (MG)				
	2050 TY	2050 TY	2050 Largest Storm in TY	2050 5- year Storm	2050 25-year Storm	
Upper Mystic	8	29.3	10.5	17.4	27.2	
Alewife Brook	13	20.9	4.84	20.9	40.1	
Charles River	6	38.4	16.6	65.5	120.6	

Significantly reducing CSO discharges from those predicted to occur in a 2050 Typical Year ("Limited CSO in 2050 Typical Year")

No CSO in a 2050 Typical Year ("2050 Typical Year") No CSO in a 2050 5-year, 24-hour design storm ("2050 5year")

	Hydraulic Model Predictions				
Receiving Water	Activation Frequency	CSO Discharge Volume (MG)			
	2050 TY	2050 TY	2050 5- year Storm	2050 25-year Storm	
Upper Mystic	8	29.3	10.5	17.4	27.2
Alewife Brook	13	20.9	4.84	20.9	40.1
Charles River	6	38.4	16.6	65.5	120.6

Significantly reducing CSO discharges from those predicted to occur in a 2050 Typical Year ("Limited CSO in 2050 Typical Year")

No CSO in a 2050 Typical Year ("2050 Typical Year") No CSO in a 2050 5-year, 24-hour design storm ("2050 5year") No CSO in a 2050 25-year, 24-hour design storm ("2050 25year")

Massachusetts Water Resources Authority

CSO Reduction and Elimination Tools

General Components of an Alternative

Sewer Separation

Green Stormwater Infrastructure

Storage

Conveyance

Regional Tunnel

Tool - Sewer Separation

Tool - Green Stormwater Infrastructure

Stormwater Bump-out on Somerville Ave, Somerville (200 sf footprint, 250 cf storage)

Tool - Storage

- Effective method to temporarily store
 CSO flow
- Need to be pumped out prior to next storm event
- Very large tanks are difficult to site and construct

Tool - Conveyance

- Increase pipe capacity to move CSO to location with available capacity or storage.
- Limited opportunities in MWRA system.
- Requires large bypass systems to maintain flows during construction.

Tool - Regional Tunnel

Assembling North Dorchester Bay Tunnel Boring Machine in Mining Shaft, September 2007

NDB CSO Overflow Pump Station

NDB Odor Control Facility

Alewife and Charles Tunnel Alternative Launch Sites

Conceptual Layout adjacent to Cottage Farm

Massachusetts Water Resources Authority

Public Engagement

Engagement Process Goals

- Provide up-to-date information to facilitate involvement and feedback
- Invite active participation from all stakeholders
 - Public Meetings
 - Watershed Group Meetings
- Conduct expansive outreach, including to Environmental Justice populations
- Commit to being receptive and responsive to public comment and suggestions

Meetings and Outreach

- Developed a joint public website https://voice.somervillema.gov/joint-cso-planning
- Hosted <u>five public meetings</u> to share information on plan development and obtain timely public input
- Held a listening session for stakeholders to share priorities and concerns
- Hosted four meetings with Watershed Associations

Public Meeting	Topic	Date	Participants
1	CSO Overview & Intro to CSO Plan	June 29, 2022	226
2	Plan Priorities & New Typical Year Development	December 15, 2022	177
3	CSO Tools & Alternative Development	November 15, 2023	243
4	Alternatives Screening & Affordability Analysis	January 22, 2025	355
	Listening Session	April 3, 2025	173
5	Results of Alternative Analysis	September 25, 2025	170+
6	Present Draft Plans	Spring 2026	Planned
7	Present Final Plans	Winter 2027	Planned

Integrating Stakeholder Input in the Plan

Recurring feedback themes and efforts to address them:

- Act with urgency for both short- and long-term solutions
 - Implemented additional signage prior to storms, & evaluated floatables and odor control solutions
 - Preference for alternatives that can be completed more quickly
- Include green infrastructure in solutions
 - Recommended alternatives include green infrastructure where feasible as part of sewer separation areas or other street excavation
- Consider the impacts of climate change
 - The Partners established a first of its kind approach 2050 Typical
 Year to evaluate projects

Integrating Stakeholder Input in the Plan

Recurring feedback themes and efforts to address them:

- Act with urgency for both short- and long-term solutions
 - ✓ Implemented additional signage prior to storms, & evaluated floatables and odor control solutions
 - ✓ Preference for alternatives that can be completed more quickly
- Include green infrastructure in solutions
 - ✓ Recommended alternatives include green infrastructure where feasible as part of sewer separation areas or other street excavation
- Consider the impacts of climate change
 - ✓ The Partners established a first of its kind approach 2050 Typical Year to evaluate projects

Massachusetts Water Resources Authority

Alternatives Development

Alternatives Development Process

- Two considerations before concepts developed:
 - Nutrient and bacteria loading
 - Potential for flooding impacts
- Initial development and screening of the technologies for individual outfalls;
- Assessment of opportunities to address two or more outfalls with a single control tool;
- Assessment of the impact of control tools on certain outfalls;
- Optimization of combinations of control tools; and
- Assessment of elimination of CSO discharges.

Alewife Brook: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5-year Storm	0 CSOs in 2050 25-year Storm
1.AB Integrated 3 tanks (3 MG) + 264 acres of sewer separation	7.AB Hybrid 1 3 tanks (2.5 MG) + 108 acres of sewer separation + 0.75- mile-long conveyance pipe	9.AB Tunnel 1.5-mile-long deep tunnel (22 ft. diameter)	11.AB Tunnel 1.5-mile-long deep tunnel (32 ft. diameter)
2.AB Hybrid 1 2 tanks (2.9 MG) + 108 acres of sewer separation + 0.75-mile-long conveyance pipe + 0.5 mile-long microtunnel	8.AB Hybrid 2 3 tanks (2.5 MG) + 8 acres of sewer separation + 0.75-milelong conveyance pipe + 0.5 mile-long microtunnel	10.AB Tunnel + GSI Same tunnel as 9.AB + GSI (36 acres)	12.AB Tunnel + GSI Same tunnel as 11.AB + GSI (36 acres)
3.AB Hybrid 2 2 tanks (3 MG) + 8 acres of sewer separation + 0.75- mile-long conveyance pipe + 1 mile-long microtunnel			

4.AB Tunnel

1.5-mile-long deep tunnel (11 ft. diameter)

5.AB Tunnel + GSI

Same tunnel as 4.AB + GSI (36 acres)

6.AB Full Sewer Separation

900 acres of sewer separation

Mystic River: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5-year Storm	0 CSOs in 2050 25-year Storm Mid-Tide
1.MR Integrated 1 tank (4 MG) + 366 acres of sewer separation	6a.MR Hybrid 1 1 tank (2.7 MG) + 95 acres of sewer separation	7.MR Storage 1 tank (10.5 MG)	10.MR Storage 1 tank (16.7 MG)
2.MR Hybrid 1 1 tank (7.4 MG) + 95 acres of sewer separation	6b.MR Hybrid 2 1 tank (5 MG)	8.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres)	11.MR Storage + GSI 1 tank (15 MG) + GSI (20 acres)
3.MR Storage 1 tank (10.5 MG)	6c.MR Hybrid 3 95 acres of sewer separation	9.MR Hybrid 1 1 tank (7.4 MG) +95 acres of sewer separation	12.MR Hybrid 1 1 tank (14.2 MG) + 95 acres of sewer separation
4.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres)			
5.MR Sewer Separation 690 acres of sewer separation			

Charles River: Summary of Alternatives Under Consideration

Service of the servic			
0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5- year Storm	0 CSOs in 2050 25-year Storm
1.CR Integrated 2 tanks (3.1 MG) + 2-mile-long deep tunnel (17 ft diameter) + 2 storage conduits	8.CR Hybrid 1 1 tank (2.5 MG) + 268 acres of sewer separation	10.CR Tunnel 4.5-mile-long deep tunnel (24 ft	12.CR Tunnel 4.5-mile-long deep tunnel (32 ft diameter)+ 1-mile-long
2.CR Hybrid 1 1 tank (2.5 MG) + 80 acres of sewer separation +2-mile-long deep tunnel (17 ft diameter)	+ 1 storage conduit	diameter) +1-mile- long Microtunnel	Microtunnel + 1 storage conduit
3.CR Hybrid 2 2 tanks (12.7 MG) + 284 acres of sewer separation +0.75 mile-long Microtunnel + + 2 storage conduits			
4.CR Hybrid 3 2 tanks (12.6 MG) + 446 acres of sewer separation + 2 storage conduits	9.CR Hybrid 2 1 tank (2.5 MG) + 80 acres of sewer separation	11.CR Tunnel + GSI Same tunnel as 10.CR	13.CR Tunnel + GSI Same tunnel as 12.CR + GSI (90 acres) + 1-mile-long Microtunnel
5.CR Tunnel 4.5-mile-deep tunnel (12 ft diameter) + 2 storage conduits	+ 0.75 mile-long Microtunnel + storage conduit	+ GSI (90 acres) + 1-mile-long Microtunnel (same	+ 1 storage conduit
6. CR Tunnel + GSI Same tunnel as 5.CR + GSI (90 acres) + 2 storage conduits		tunnel as 10. CR)	
7.CR Full Separation 4,400 acres			43

Massachusetts Water Resources Authority

Alternatives Evaluation and Scoring

Alternative Evaluation/Selection Considerations

- Level of CSO control
- Permitting uncertainty
- Site acquisition risks
- Capital Cost and Life Cycle Cost
- Timeline to implementation/CSO benefits
- Impact on priority, vulnerable, and environmental justice populations
- Benefits criteria
- Stakeholder input

Benefits Criteria				
Criteria Category	Evaluation Criterion			
CSO Performance	Water quality impact; nutrient load reduction			
C30 Periorillance	Schedule: minimize duration to CSO reduction benefit			
	Minimize construction impacts			
	Impacts to public uses during construction			
Construction	Neighborhood impacts during construction			
	Minimize construction complexity/risk			
	Depth to excavation			
	Construction complexity			
Operations, Maintenance &	Operation and maintenance/safety considerations			
· ·	Resiliency and adaptability			
Resiliency	Opportunity to upgrade existing infrastructure			
	Flooding: reduce sewer/stormwater flood risk			
Community & Ancillary	Community co-benefits and long-term site impacts			
Benefits	Community co-benefits			
Delicits	Permanent impacts to public uses			
	Impacts to non-variance CSOs			
		46		

Alewife Brook: Scoring

0 CSOs in 2050 Typical Year	Preliminary Score ^{1,2}
1.AB Integrated 3 tanks (3 MG) + 264 acres of sewer separation	21.48
2.AB Hybrid 1 2 tanks (2.9 MG) + 108 acres of sewer separation + 0.75-mile-long conveyance pipe + 0.5 mile-long microtunnel	24.94
3.AB Hybrid 2 2 tanks (3 MG) + 8 acres of sewer separation + 0.75-mile-long conveyance pipe + 1 mile-long microtunnel	23.67
4.AB Tunnel 1.5-mile-long deep tunnel (11 ft. diameter)	19.16
5.AB Tunnel + GSI Same tunnel as 4.AB + GSI (36 acres)	18.82
6.AB Full Sewer Separation 900 acres of sewer separation	20.81

Notes:

- 1. Based on numeric criteria only.
- 2. Scores may be refined as part of Draft Report

Scoring Example - Sensitivity Analysis ("Heat Maps")

	Alewife Brook												
WEIGHTED SCORES:	1. AB - Integrated Alternative	2. AB - Hyb Alternative		4. AB - Tunnel Alternative	5. AB - Tunnel + GSI Alternative	6. Sewer Separation							
WS1	228.4	265.	0 244.7	205.6	215.2	248.9							
WS2	238.2	276.	6 269.4	227.4	234.8	229.9							
WS3	230.2	249.	0 268.6	237.5	231.3	157.8							
WS4	203.8	239.	6 241.6	231.6	248.2	140.1							T
WS5	251.3	287.	1 299.1	281.6	305.7	193.6	dest Married	1 1		and I American		_	+
WS6	214.8	249.	4 236.7	191.6	188.2	216.6	1980) Marie 1972	Santament (France)	11000	PRESIDENCE A PROPERTY.	A 48 - Name 41	1.64 South Co.	
WS7	207.4	239.	7 219.6	183.5	182.7	224.2		-					+
WS8	287.9	341.	7 376.4	380.0	383.0	79.4	4.01				1.87 5	5	1
WS9	214.8	249.	4 236.7	191.6	188.2	216.6	4				4 4	4	
		Books Contra line input t	Alpents common imports Cliffonts Forego Was income		2.75		2.75				3 25	2.25	1
		Impurity to Fulling Lives own Commençation	Section of the company of providing an ill point further, then more involving approximation of entires, and employers required including approximations of entires. Note that approximation of the company		3		3		1 2 1		3 3	1	
		Angeometrical Imperior desire Commission	- Sealand (manufacture and manufacture and man		2.5		2.5				3 4	3.5	
		Monte Controller Conjunction	Citize advantas include finança i Proc septidado		2		3				3 2	2	\pm
		despite to Concession	Distinct execution of cont - 20 fee Cooper execution of text 20 to 20 fe Original expension of text 20 feet		3		3				3 1	- 1	
		Commented Completely	International continues and internal constraints Photography (implies torques mg.) contraints Red Book, constraint accounting to the constraint and and internal		1		4				3 3	3	
	1	Operation and Maximum co-Salary Contributation	Place A College Community (Address College Col		3		2.5				2.5 2	1	T
		Besterry and Assertably	Contained production of the supplemental and supplem	nta:	1		4				1 1	1	T
		Square territy to Engrade Lancing			a		3				3 1	1	Ť
	ŀ	Planting Select seasonists reside Sand risk	Sections promote relationaries (studies asset) autore profiles projet Court Core constitute (separational train analysis for surely) Sections (surely) of courtypes contribute a sub-opt (set of surely).		0.8		0.4		1		0.1 0.2	0	Ť
		Community to tenefits and to tene the intents	T, this impression of the factor one. This impression of the factor one.		2.25		2.25				2.25 1.5	2.25	
		Europeanty Co-Senaths	6. Offersy conducted the other private collections, serving temperatures and the percentage of the Offer all risks of peak great goods. An interpretage of the Offers and the Offers of the Offers and produced and the Offers of the Offers	*	0.5		0.5				0.5	- 3	
		Permission Insperie No. PLANS offers	United Material Signate (1990). 1. Malabelly resource destination of the control of control of the control of	ry	4		-94				4 2	15	T
		requests to turn Europea CSOs	Committee to procure the committee of th		0		0				0 0	g	T
	-		SUBSECTION	metra	21.48		24.94	4		2	3.67 19.16	18.82	1

Alternative Evaluation/Selection Considerations

- Level of CSO control
- Permitting uncertainty
- Site acquisition risks
- Capital Cost and Life Cycle Cost
- Timeline to implementation/CSO benefits
- Impact on priority, vulnerable, and environmental justice populations
- Benefits criteria
- Stakeholder input

Massachusetts Water Resources Authority

Recommended Alternatives

\$600M, 30-35 years

\$440M, 18-23 years

\$600M, 15-20 years 5.AB Tunnel + GSI

area \$630M, 18-23 years

6.AB Full Sewer Separation

2.AB Hybrid 1

Alewife Brook: Summary of Alternatives Under Consideration

0 CSOs in 2050 5-

1.5-mile-long deep tunnel

1.5-mile-long deep tunnel

(same tunnel as 9.AB) +

GSI **\$1.1B**, **12-15** years

year Storm

(22 ft. diameter)

\$990M, 12-15 years

10.AB Tunnel + GSI

9.AB Tunnel

0 CSOs in 2050 25-year

1.5-mile-long deep tunnel (32 ft.

1.5-mile-long deep tunnel (same

Storm

11.AB Tunnel

\$1.7B, 12-15 years

12.AB Tunnel + GSI

\$1.7B, 12-15 years

tunnel as 11.AB) + GSI

diameter)

0 CSOs in 2050 Typical Year

3 tanks (3 MG) + 264 acres of sewer separation

Limited CSOs in 2050 Typical Year

3 tanks (2.5 MG) + 8 acres of

sewer separation + 0.75-mile-

long conveyance pipe + 0.5 mile-

1.AB Integrated

7.AB Hybrid 1 3 tanks (2.5 MG) + 108 acres of

sewer separation + 0.75-milelong conveyance pipe \$320M, 18-23 years 8.AB Hybrid 2

long microtunnel \$240M, 10-20 years

3.AB Hybrid 2 2 tanks (3 MG) + 8 acres of sewer separation + 0.75mile-long conveyance pipe + 1 mile-long microtunnel \$340M, 13-18 years 4.AB Tunnel 1.5-mile-long deep tunnel (11 ft. diameter)

1.5-mile-long deep tunnel (same tunnel as 4.AB) + GSI

900 acres of sewer separation: \$1.7B, 50+ years

2 tanks (2.9 MG) + 108 acres of sewer separation + 0.75-

mile-long conveyance pipe + 0.5 mile-long microtunnel

2.AB Hybrid 1

3.AB Hybrid 2

\$440M, 18-23 years

\$340M, 13-18 years

\$600M, 15-20 years

area \$630M, 18-23 years

Alewife Brook: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year

2 tanks (2.9 MG) + 108 acres of sewer separation + 0.75-

mile-long conveyance pipe + 0.5 mile-long microtunnel

2 tanks (3 MG) + 8 acres of sewer separation + 0.75mile-long conveyance pipe + 1 mile-long microtunnel

Limited CSOs in 2050 Typical Year

3 tanks (2.5 MG) + 108 acres of

sewer separation + 0.75-mile-

3 tanks (2.5 MG) + 8 acres of

sewer separation + 0.75-mile-

long conveyance pipe + 0.5 mile-

long conveyance pipe \$320M, 18-23 years

7.AB Hybrid 1

8.AB Hybrid 2

long microtunnel \$240M, 10-20 years 0 CSOs in 2050 5-

1.5-mile-long deep tunnel

1.5-mile-long deep tunnel

(same tunnel as 9.AB) +

GSI **\$1.1B**, **12-15** years

year Storm

(22 ft. diameter)

\$990M, 12-15 years

10.AB Tunnel + GSI

9.AB Tunnel

0 CSOs in 2050 25-year

1.5-mile-long deep tunnel (32 ft.

1.5-mile-long deep tunnel (same

Storm

11.AB Tunnel

\$1.7B, 12-15 years

12.AB Tunnel + GSI

\$1.7B, 12-15 years

tunnel as 11.AB) + GSI

diameter)

\$440M, 18-23 years

\$340M, 13-18 years

\$600M, 15-20 years

area \$630M, 18-23 years

2 tanks (3 MG) + 8 acres of sewer separation + 0.75mile-long conveyance pipe + 1 mile-long microtunnel

3.AB Hybrid 2

Alewife Brook: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year

Limited CSOs in 2050 Typical Year

\$240M, 10-20 years

0 CSOs in 2050 25-year Storm

1.5-mile-long deep tunnel (32 ft.

1.5-mile-long deep tunnel (same

11.AB Tunnel

\$1.7B, 12-15 years

12.AB Tunnel + GSI

\$1.7B, 12-15 years

tunnel as 11.AB) + GSI

diameter)

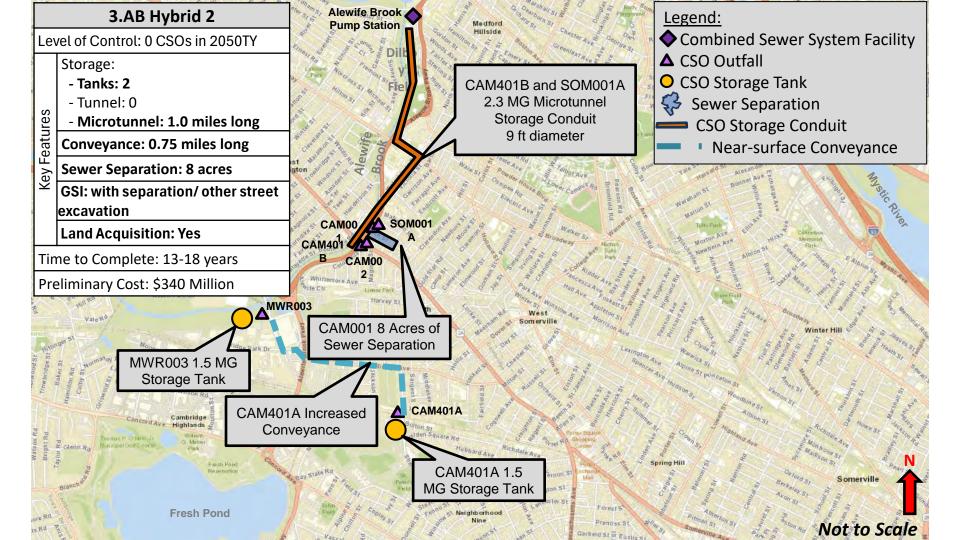
0 CSOs in 2050 5-

1.5-mile-long deep tunnel

1.5-mile-long deep tunnel

(same tunnel as 9.AB) +

GSI \$1.1B, 12-15 years


year Storm

(22 ft. diameter)

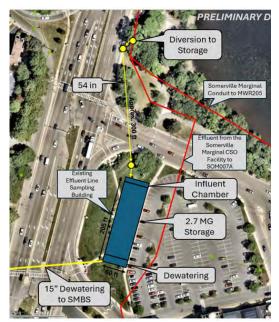
\$990M, 12-15 years

10.AB Tunnel + GSI

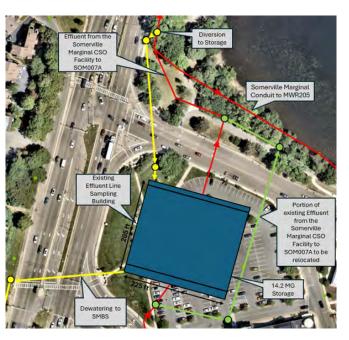
9.AB Tunnel

Mystic River: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5-year Storm	0 CSOs in 2050 25-year Storm Mid-Tide
1.MR Integrated 1 tank (4 MG) + 366 acres of sewer separation \$500M, 18-23 years	6a.MR Hybrid 1 1 tank (2.7 MG) + 95 acres of sewer separation \$170M, 5-10 years	7.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	10.MR Storage 1 tank (16.7 MG) \$260M, 5-10 years
2.MR Hybrid 1 1 tank (7.4 MG) + 95 acres of sewer separation \$260M, 5-7 years	6b.MR Hybrid 2 1 tank (5 MG) \$120M, 3-8 years	8.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$200M, 5-7 years	11.MR Storage + GSI 1 tank (15 MG) + GSI (20 acres) \$260M, 5-10 years
3.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	6c.MR Hybrid 3 95 acres of sewer separation \$100M, 5-10 years	9.MR Hybrid 1 1 tank (7.4 MG) +95 acres of sewer separation \$260M, 5-7 years	12.MR Hybrid 1 1 tank (14.2 MG) + 95 acres of sewer separation \$340M, 5-10 years
4.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$260M, 5-7 years			
5.MR Sewer Separation 690 acres of sewer separation \$640M, 50+ years			55



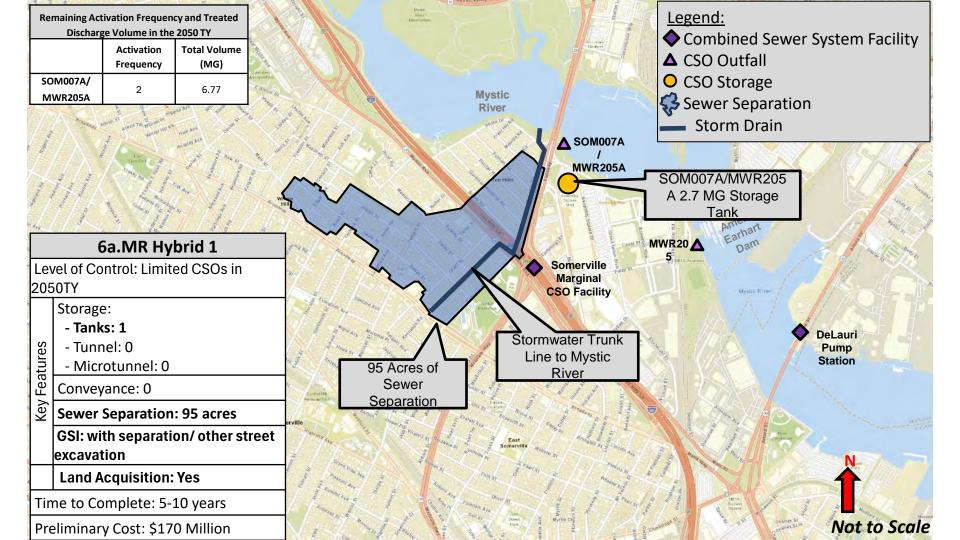
Mystic River: Summary of Alternatives Under Consideration


0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5-year Storm	0 CSOs in 2050 25-year Storm Mid-Tide
1.MR Integrated 1 tank (4 MG) + 366 acres of sewer separation \$500M, 18-23 years	6a.MR Hybrid 1 1 tank (2.7 MG) + 95 acres of sewer separation \$170M, 5-10 years	7.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	10.MR Storage 1 tank (16.7 MG) \$260M, 5-10 years
2.MR Hybrid 1 1 tank (7.4 MG) + 95 acres of sewer separation \$260M, 5-7 years	6b.MR Hybrid 2 1 tank (5 MG) \$120M, 3-8 years	8.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$200M, 5-7 years	11.MR Storage + GSI 1 tank (15 MG) + GSI (20 acres) \$260M, 5-10 years
3.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	6c.MR Hybrid 3 95 acres of sewer separation \$100M, 5-10 years	9.MR Hybrid 1 1 tank (7.4 MG) +95 acres of sewer separation \$260M, 5-7 years	12.MR Hybrid 1 1 tank (14.2 MG) + 95 acres of sewer separation \$340M, 5-10 years
4.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$260M, 5-7 years			
5.MR Sewer Separation 690 acres of sewer separation \$640M, 50+ years			56

Upper Mystic Storage Tanks

Limited CSOs TY – 2.7 MG (2 Activations/6.8MG of 29.3MG Remaining)

2050 TY - 7.4 MG


2050 25-yr – 14.2 MG

These scenarios all include 95 acres of sewer separation

Mystic River: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5-year Storm	0 CSOs in 2050 25-year Storm Mid-Tide
1.MR Integrated 1 tank (4 MG) + 366 acres of sewer separation \$500M, 18-23 years	6a.MR Hybrid 1 1 tank (2.7 MG) + 95 acres of sewer separation \$170M, 5-10 years	7.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	10.MR Storage 1 tank (16.7 MG) \$260M, 5-10 years
2.MR Hybrid 1 1 tank (7.4 MG) + 95 acres of sewer separation \$260M, 5-7 years	6b.MR Hybrid 2 1 tank (5 MG) \$120M, 3-8 years	8.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$200M, 5-7 years	11.MR Storage + GSI 1 tank (15 MG) + GSI (20 acres) \$260M, 5-10 years
3.MR Storage 1 tank (10.5 MG) \$200M, 5-7 years	6c.MR Hybrid 3 95 acres of sewer separation \$100M, 5-10 years	9.MR Hybrid 1 1 tank (7.4 MG) +95 acres of sewer separation \$260M, 5-7 years	12.MR Hybrid 1 1 tank (14.2 MG) + 95 acres of sewer separation \$340M, 5-10 years
4.MR Storage + GSI 1 tank (9.4 MG) + GSI (20 acres) \$260M, 5-7 years			
5.MR Sewer Separation 690 acres of sewer separation \$640M, 50+ years			58

Charles River: Summary of Alternatives Under Consideration

Thanks Miver: Summary of Afternatives Shaci Sonsideration						
0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5- year Storm	0 CSOs in 2050 25-year Storm			
1.CR Integrated 2 tanks (3.1 MG) + 2-mile-long deep tunnel (17 ft diameter) + 2 storage conduits \$1.1B, 13-18 years	8.CR Hybrid 1 1 tank (2.5 MG) + 268 acres of sewer separation	10.CR Tunnel 4.5-mile-long deep tunnel (24 ft	12.CR Tunnel 4.5-mile-long deep tunnel (32 ft diameter)+ 1-mile-long			
2.CR Hybrid 1 1 tank (2.5 MG) + 80 acres of sewer separation +2-mile-long deep tunnel (17 ft diameter) \$1.2B, 13-18 years	+ 1 storage conduit \$360M 23-28 years	diameter) +1-mile- long Microtunnel \$1.9B, 15-20 years	Microtunnel + 1 storage conduit \$2.6B, 15-20 years			
3.CR Hybrid 2 2 tanks (12.7 MG) + 284 acres of sewer separation +0.75 mile-long Microtunnel + + 2 storage conduits \$750M, 23-28 years						
4.CR Hybrid 3 2 tanks (12.6 MG) + 446 acres of sewer separation + 2 storage conduits \$690M, 28-33 years	9.CR Hybrid 2 1 tank (2.5 MG) + 80 acres of sewer separation	11.CR Tunnel + GSI 10.CR + GSI (90 acres)	13.CR Tunnel + GSI 13.CR + GSI (90 acres) \$2.7B, 15-20 years			
5.CR Tunnel 4.5-mile-deep tunnel (12 ft diameter) + 2 storage conduits \$1.4B, 15-20 years	+ 0.75 mile-long Microtunnel + storage conduit \$300M, 8-13 years	\$2B, 15-20 years				
6. CR Tunnel + GSI 5.CR + GSI (90 acres) \$1.5B, 15-20 years						
7.CR Full Separation 4,400 acres \$4.5B, 50+ years			60			

Charles River: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5- year Storm	0 CSOs in 2050 25-year Storm	
1.CR Integrated 2 tanks (3.1 MG) + 2-mile-long deep tunnel (17 ft diameter) + 2 storage conduits \$1.1B, 13-18 years	8.CR Hybrid 1 1 tank (2.5 MG) + 268 acres of sewer separation	10.CR Tunnel 4.5-mile-long deep tunnel (24 ft	12.CR Tunnel 4.5-mile-long deep tunnel (32 ft diameter)+ 1-mile-long	
2.CR Hybrid 1 1 tank (2.5 MG) + 80 acres of sewer separation +2-mile-long deep tunnel (17 ft diameter) \$1.2B, 13-18 years	+ 1 storage conduit \$360M 23-28 years	diameter) +1-mile- long Microtunnel \$1.9B, 15-20 years	Microtunnel + 1 storage conduit \$2.6B, 15-20 years	
3.CR Hybrid 2 2 tanks (12.7 MG) + 284 acres of sewer separation +0.75 mile-long Microtunnel + + 2 storage conduits \$750M, 23-28 years				
4.CR Hybrid 3 2 tanks (12.6 MG) + 446 acres of sewer separation + 2 storage conduits \$690M, 28-33 years	9.CR Hybrid 2 1 tank (2.5 MG) + 80 acres of sewer separation	11.CR Tunnel + GSI 10.CR + GSI (90 acres) \$2B, 15-20 years	13.CR Tunnel + GSI 13.CR + GSI (90 acres) \$2.7B, 15-20 years	
5.CR Tunnel 4.5-mile-deep tunnel (12 ft diameter) + 2 storage conduits \$1.4B, 15-20 years	+ 0.75 mile-long Microtunnel + storage conduit \$300M, 8-13 years			
6. CR Tunnel + GSI 5.CR + GSI (90 acres) \$1.5B, 15-20 years	, , , , , , , , , , , , , , , , , , , ,			
7.CR Full Separation	1		61	

3.CR - Hybrid Alternative 2 (0 CSOs in 2050 TY) components: MWR201

Description:

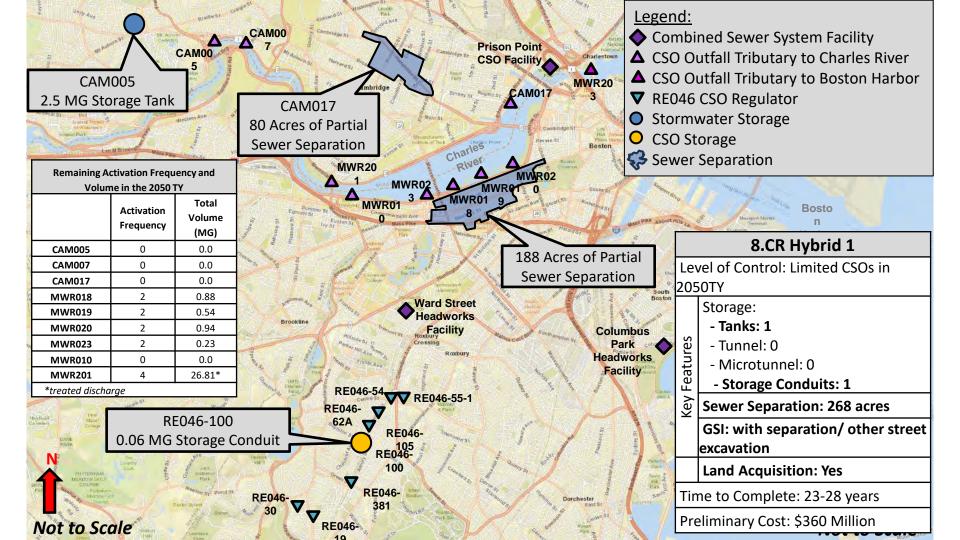
- A below-grade storage tank would be constructed to capture overflow from Cottage Farm.
 - · Overall facility length: 305 ft.
 - Overall facility width: 150 ft.
 - Volume: 10.2 MG
 - · Sidewater depth: 40 ft.
- Influent screens, 10.2 MGD dewatering pump facility, and odor control
- Above-grade building and at-grade access hatches upon completion of construction
- <u>Land Owner</u>- Commonwealth of Massachusetts DCR

Project Timeline: 5 to 10 years

Performance:

<u>CSOs</u>: 0 activations in 2050 TY at Outfall MWR201. Treated CSO reduction in TY= 30.12 MG

Phosphorus load impact: 777 lb annual reduction at MWR201


Challenges

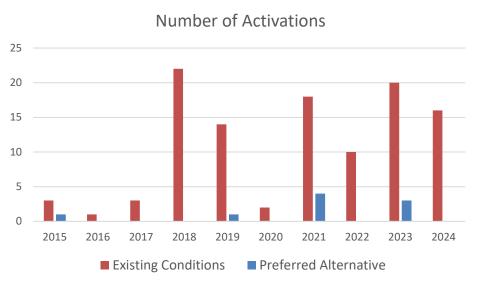
- Article 97 required for constructing storage facility in Magazine Beach Park.
- Extensive impacts to park during construction. Small above-grade building to remain at site permanently.
- Deep excavation adjacent to Charles River.
- Long-term maintenance access needed to storage facility.

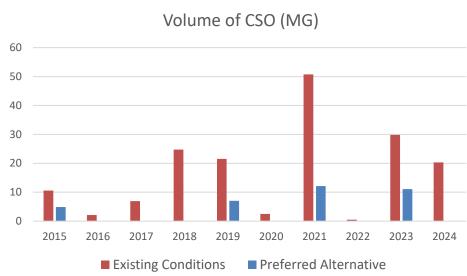
Charles River: Summary of Alternatives Under Consideration

0 CSOs in 2050 Typical Year	Limited CSOs in 2050 Typical Year	0 CSOs in 2050 5- year Storm	0 CSOs in 2050 25-year Storm
1.CR Integrated 2 tanks (3.1 MG) + 2-mile-long deep tunnel (17 ft diameter) + 2 storage conduits \$1.1B, 13-18 years	8.CR Hybrid 1 1 tank (2.5 MG) + 268 acres of sewer separation	10.CR Tunnel 4.5-mile-long deep tunnel (24 ft	12.CR Tunnel 4.5-mile-long deep tunnel (32 ft diameter)+ 1-mile-long
2.CR Hybrid 1 1 tank (2.5 MG) + 80 acres of sewer separation +2-mile-long deep tunnel (17 ft diameter) \$1.2B, 13-18 years	+ 1 storage conduit \$360M 23-28 years	diameter) +1-mile- long Microtunnel \$1.9B, 15-20 years	Microtunnel + 1 storage conduit \$2.6B, 15-20 years
3.CR Hybrid 2 2 tanks (12.7 MG) + 284 acres of sewer separation +0.75 mile-long Microtunnel + + 2 storage conduits \$750M, 23-28 years			
4.CR Hybrid 3 2 tanks (12.6 MG) + 446 acres of sewer separation + 2 storage conduits \$690M, 28-33 years	9.CR Hybrid 2 1 tank (2.5 MG) + 80 acres of sewer separation	11.CR Tunnel + GSI 10.CR + GSI (90 acres)	13.CR Tunnel + GSI 13.CR + GSI (90 acres) \$2.7B, 15-20 years
5.CR Tunnel 4.5-mile-deep tunnel (12 ft diameter) + 2 storage conduits \$1.4B, 15-20 years	+ 0.75 mile-long Microtunnel + storage conduit \$300M, 8-13 years	\$2B, 15-20 years	
6. CR Tunnel + GSI 5.CR + GSI (90 acres) \$1.5B, 15-20 years			
7.CR Full Separation 4,400 acres \$4.5B, 50+ years			63

Summary of Recommended Alternatives

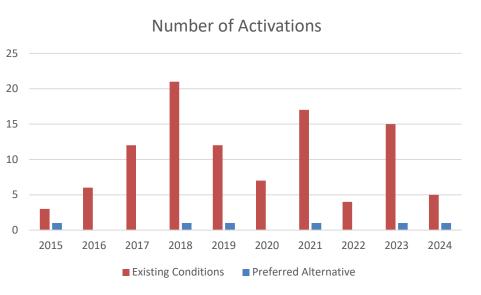
Receiving Waterbody	Alternative Name	Level of Control	Cost	Duration
Alewife Brook	3.AB Hybrid 2	0 CSOs in 2050 TY	\$340M	13-18 years
Upper Mystic	6a.MR Hybrid 1	Limited CSOs in 2050 TY	\$170M	5-10 years
Charles River	8.CR Hybrid 1	Limited CSOs in 2050 TY	\$360M	23-28 years
		Total Cost	\$870M	

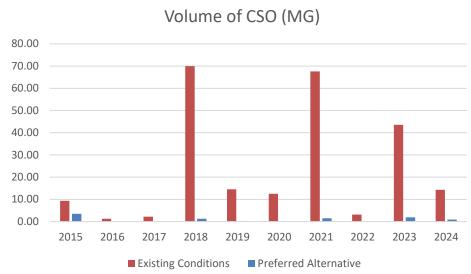

Massachusetts Water Resources Authority


Projected CSO Reduction

Plan performance – 2050 Typical Year

		Hydraulic Model Predictions 2050 TY				
		Activation Frequency		CSO Discharge Volume (MG)		
		Baseline	Recommended	Baseline	Recommended	
Receiving Water	Level of Control	Conditions	Plan	Conditions	Plan	
Upper Mystic	1 – Limited CSOs in 2050 Typical Year	8	2	29.3	6.7 Treated	
Alewife Brook	2 – Zero CSOs in 2050 Typical Year	13	0	20.9	0	
Charles River	1 – Limited CSOs in 2050 Typical Year	6	4	38.4	1.2 Untreated 26.8 Treated	




92% reduction in activation frequency (109 to 9 for 10-year period)

79% reduction in total volume (170 to 35 MG for 10-year period)

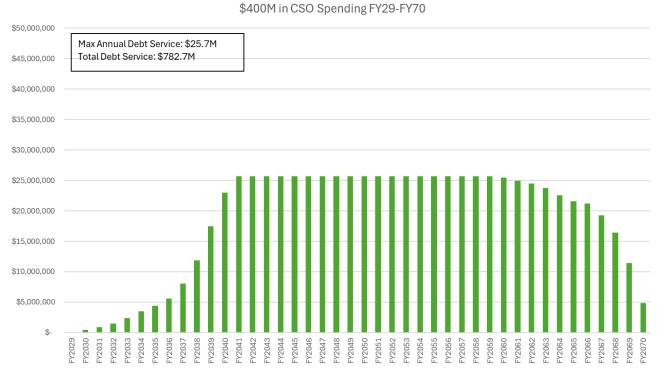
Plan performance - Historical record Upper Mystic River

94% reduction in activation frequency (102 to 6 for 10-year period)

96% reduction in total volume (239 to 9 MG for 10-year period)

Cost Sharing and Financial Considerations

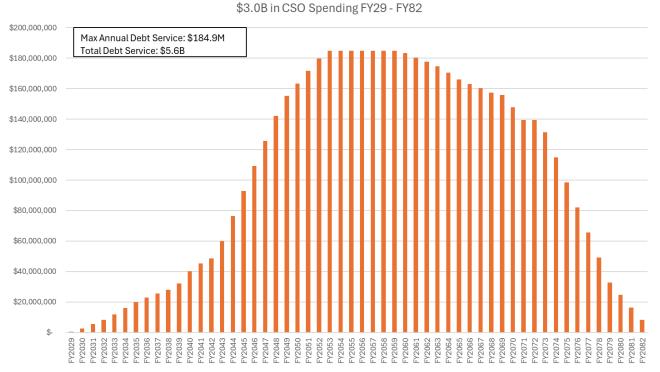
Cost Sharing Methodologies


CSO Ownership:

- Owner of outfall would pay for the solution
- Regional projects, costs would be allocated between multiple owners by CSO volume
- Project Type and Location:
 - Separation or green infrastructure projects would be paid by the community being separated or where projects are located
 - Local storage projects within a community collection system would be paid for by the community whose flow is being captured.
 - Regional storage would be allocated by contributing flow.
- CSO Volume Reduction:
 - Costs would be apportioned for each receiving water based on the reduction in CSO volume by each outfall owner.

Projected \$400 Million in CSO Project Debt Service

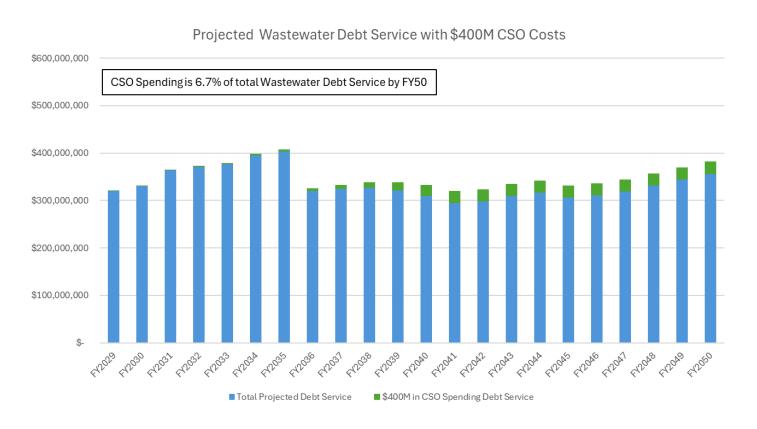
- Projected Design and Construction Spending between 2028 and 2039.
- Total Debt Service Cost **\$782.7 million** in debt service costs.



• All bonds issued as level debt service for 30 years at 5.0% interest. Preliminary projected project costs are in today's dollars.

Projected \$3.0 Billion in CSO Project Debt Service

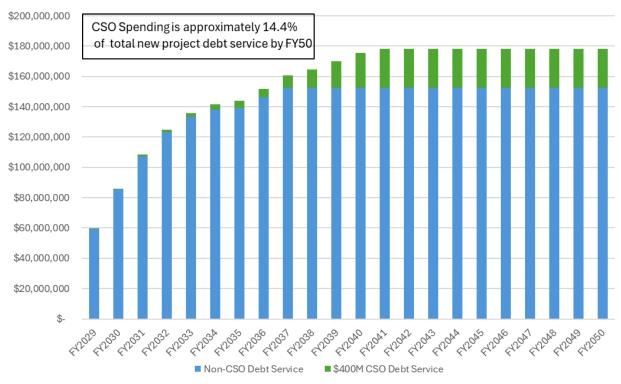
- Design and construction spending between 2028 and 2053.
- Results in **\$5.6 billion** in debt service costs.



• All bonds issued as level debt service for 30 years at 5.0% interest. Preliminary projected project costs are in today's dollars.

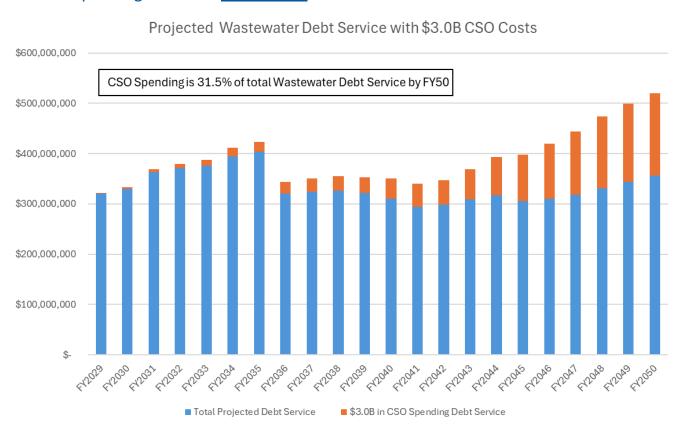
Projected Wastewater Debt Service with \$400 million in CSO Costs

• \$400 million in CSO spending results in **\$335.8 million** in additional debt service costs between FY29 and FY50.

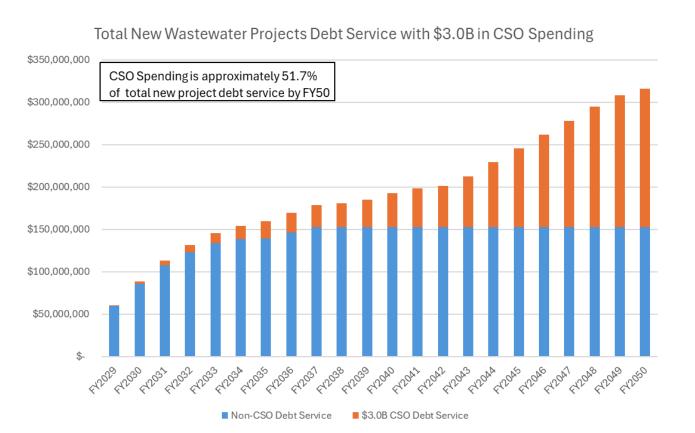


Projected Wastewater Debt Service with \$400 million in CSO Costs

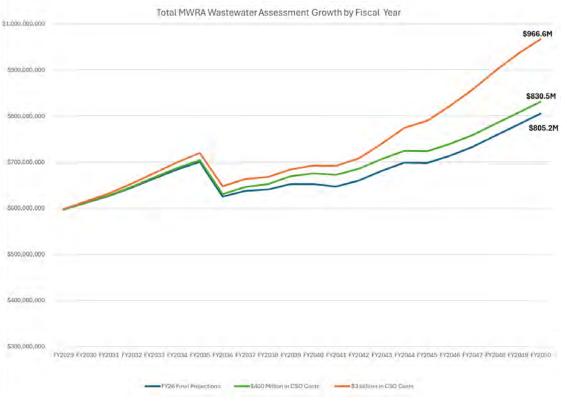
• \$400 million in CSO spending would comprise **14.4%** of total wastewater debt service costs in FY50.



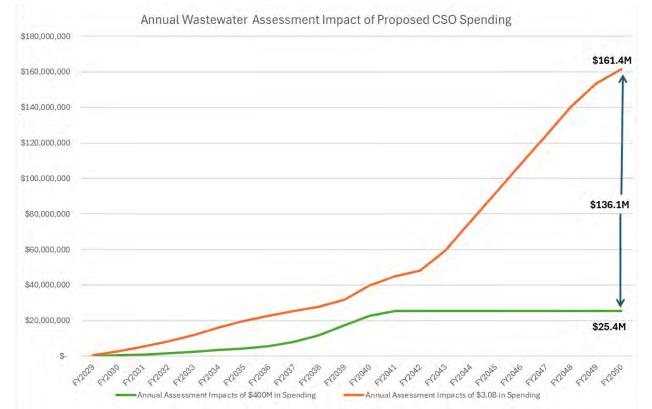
Projected Wastewater Debt Service with \$3.0 billion in CSO Costs


• \$3.0 billion in CSO spending results in **\$1.2 billion** in additional debt service costs between FY29 and FY50.

Projected Wastewater Debt Service with \$3.0 billion in CSO Costs

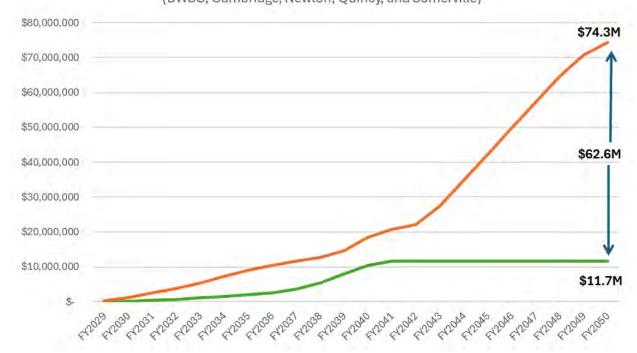

• \$3.0 billion in CSO spending would comprise **51.7%** of total wastewater debt service costs in FY50.

Projected Wastewater Assessment


• \$400 million in spending increases assessment by **\$25.4 million** and \$3.0 billion increases assessment by **\$161.4** million by FY50.

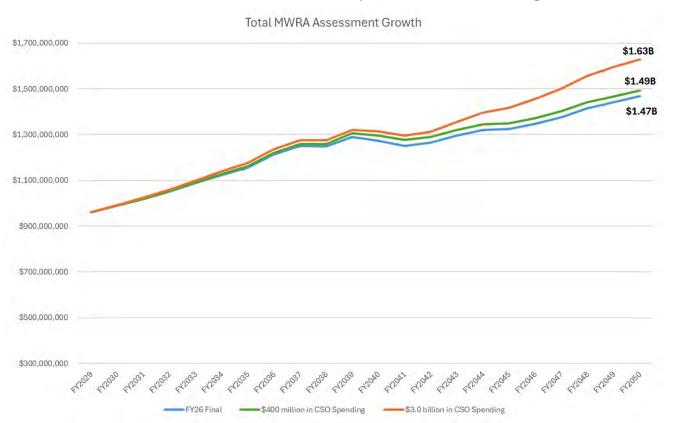
Projected Wastewater Assessment Impacts

- \$400 million in CSO spending increases the total community charges by \$331.8 million between FY29 and FY50.
- \$3.0 billion in CSO spending increases the total community charges by **\$1.2 billion** between FY29 and FY50.



Projected Wastewater Assessment on Top 5 Users

- \$400 million in CSO spending increases the total assessed by \$152.7 million between FY29 and FY50.
- \$3.0 billion in CSO spending increases the total assessed by **\$560.7 million** between FY29 and FY50.


Annual Wastewater Assessment Impact of CSO Spending on Top 5 Communities
Over FY26 Projections
(BWSC, Cambridge, Newton, Quincy, and Somerville)

Projected Total Assessments

• 35 of the 43 wastewater communities receive all or a portion of their drinking water from MWRA.

Massachusetts Water Resources Authority

Next Steps

2025 Activities

- Scoring alternatives and recommending one per waterbody
- Affordability of recommended alternatives
- Water quality impacts of recommended alternatives
- Draft recommended plan due to EPA and DEP December 31, 2025

2026 Activities

- Public mtg #6 on draft recommended plan
- Public hearing and public comment period
- Additional outreach in affected communities
- Team reviews comments and modifies plan

- Final plan submitted January 2027
- EPA and DEP review the plan for further CSO control
- Design of projects
- Construction!

Massachusetts Water Resources Authority

Questions

